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Herbivorous insects are extraordinarily diverse, yet are found in only one-third
of insect orders. This skew may result from barriers to plant colonization,
coupled with phylogenetic constraint on plant-colonizing adaptations. The
plant-penetrating ovipositor, however, is one trait that surmounts host plant
physical defences and may be evolutionarily labile. Ovipositors densely lined
with hard bristles have evolved repeatedly in herbivorous lineages, including
within theDrosophilidae.However, the evolution andgenetic basis of this inno-
vation has not beenwell studied. Here, we focused on the evolution of this trait
inScaptomyza, a genus sister toHawaiianDrosophila, that contains a herbivorous
clade. Our phylogenetic approach revealed that ovipositor bristle number
increased as herbivory evolved in the Scaptomyza lineage. Through a genome-
wide association study, we then dissected the genomic architecture of variation
in ovipositor bristle number within S. flava. Top-associated variants were
enriched for transcriptional repressors, and the strongest associations included
genes contributing to peripheral nervous system development. Individual gen-
otyping supported the association at a variant upstream of Gαi, a neural
development gene, contributing to a gain of 0.58 bristles/major allele. These
results suggest that regulatory variation involving conserved developmental
genes contributes to this keymorphological trait involved in plant colonization.
1. Introduction
Herbivorous insects are among the most successful animal radiations, represent-
ing approximately one-quarter of animal species, yet are only found in one-third
of extant insect orders [1–3], suggesting phylogenetic constraint on adaptations
required for this transition. Indeed, herbivory requires multi-faceted adaptations,
including locating appropriate host plants, attachment to the host, resisting desic-
cation, and feeding on nutritionally unbalanced, chemically and physically
defended plant tissues [4]. Despite the paucity of insect orders with herbivorous
species, herbivory has evolvedmany times independentlywithin some orders [2],
including at least 25 times within Diptera [5]. Identifying whether these clades
share specific traits may help resolve the paradox of why herbivory has only
evolved in some orders despite often leading to species radiations.

The plant-penetrating ovipositor is one such trait that facilitates entry into this
new ecological niche and has driven species radiations. It evolved within major
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Figure 1. Female ovipositor morphology of the herbivorous drosophilid Scaptomyza flava enables cutting into tough plant tissues for feeding and egg-laying. (a) The
S. flava life cycle is strongly dependent on accessing the leaf interior. On the underside of an Arabidopsis thaliana leaf, a female uses her serrated ovipositor to create a
leaf puncture to drink from and/or to oviposit in. Larval mines outlined in blue. (b) The comparison of ovipositors (insets) of herbivorous and non-herbivorous drosophilid
species. (c) Scanning electron micrographs of the ovipositor of S. flava (hypogynial short sensilla, not shown). (Online version in colour.)
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radiations of true fruit flies (Tephritidae), leaf-mining flies
(Agromyzidae) and leafhoppers (Cicadellidae)—together
comprising approximately 27 500 species—as well as within
sawflies (Tenthredinidae), katydids (Tettigoniidae) and plant
bugs (Miridae) [6]. The insertion of eggs into plant tissue
allows neonate larvae to bypass physical defences and hatch
directly into the leaf interior, avoiding dessication and provid-
ing protection from the environment and enemies [4,7]. Some
insects with plant-penetrating ovipositors, like agromyzid
flies, also consume leaf exudates from oviposition wounds
[8], providing a novel trophic resource to adults, even in the
absence of chewing mouthparts.

The Drosophilidae is a compelling species radiation for
studying plant-penetrating ovipositors as a key morphological
trait for the evolution of herbivory. While most drosophilid
species feed on decaying plant tissues and microbes, plant-
penetrating ovipositors are found in all known lineages
that evolved herbivory independently: (i)D. suzukii, a general-
ist pest of ripe fruit [9], (ii) leaf-miners within the genus
Scaptomyza (Drosophilidae), which includes the model herbi-
vore Scaptomyza flava, a specialized pest of Brassicaceae crops
(figure 1a) [10], (iii) Scaptodrosophila notha, a specialist of
living bracken fern fronds (Pteridium spp.) [11] and (iv) leaf-
mining species of Lordiphosa [12]. All four lineages bear sclero-
tized ovipositors, studdedwith sharp, enlarged bristles used to
pierce or scrape into living plants. Drosophilid flies have
already been in use as models for the evolution of herbivory
[13], and genetic dissection of herbivore-specific traits is
enabled by the availability of high-quality genome assemblies
across the genus [14], functional genetic data from Drosophila
melanogaster, and a strong phylogenetic framework for
Drosophilidae [15].

Although ovipositors of herbivorous drosophilids differ in
many morphological aspects, one shared feature is a row of
supernumerary bristles along the ventral and posteriormargins
used for cutting (e.g. Figure 1b,c). Drosophilids possess several
ovipositor sensilla types, including one long hypogynial sen-
silla and three trichoid short hypogynial sensilla located on
the inner surface of the oviscapt apex [16]. On the outer surface
are hair- or peg-like ovipositor bristles (also termed hypogynial
teeth), located ventrally, posteriorly and/or laterally (figure 1c).
While the first two sensilla types on the inner surface do not
vary widely in number across species, ovipositor bristles vary
significantly in number, shape and location [17]. The function
of these bristles in Drosophila is not fully understood, but in
D. suzukii and D. melanogaster, ovipositor bristles harbour
mechanosensory neurons, and are used to sense substrate
hardness during egg-laying [18,19]. We thus hypothesize
that during the evolution of herbivory, the ovipositor was co-
opted into a cutting tool through the increased number and
hardening of these mechanosensory bristles, facilitating access
to turgid, fibrous plant cells. We therefore focused on increased
bristle number, which has beenwell studied from a quantitative
genetics and developmental biology perspective [20].
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To investigate whether increased ovipositor bristles were
associated with this transition to herbivory and to explore
underlying molecular mechanisms of this increase, we focused
on the cutting ovipositor of herbivorous Scaptomyza, particu-
larly S. flava. In addition to morphological changes, S. flava
has acquired a stereotyped behavioural repertoire for feeding
and egg-laying: females tap their ovipositors around the
leaf searching for an ideal site, then scoop a hole by repeate-
dly opening their oviscapts laterally, and finally turn
anticlockwise to imbibe the leaf exudates (electronic
supplementary material, videos S1 and S2). Because S. flava
females create hundreds of punctures over their lifespan [21]
and spend a lengthy amount of time cutting each hole—
roughly one minute versus a few seconds in microbe-feeders,
such as D. melanogaster [22]—adaptations that reduce energy
expenditure could be favoured by natural selection. Addition-
ally, plants vary in the toughness of their leaves, which may
correlate with variation in ovipositor bristle number in an
optimal foraging context. Neonate S. flava larvae are also
dependent on oviposition directly into the leaf, as those that
hatch outside do not survive [10].

We first investigated whether ancestral increases in ovipo-
sitor bristle number paralleled the transition to herbivory in
Scaptomyza, using phylogenetic generalized least-squares
(PGLS) methods and ancestral state reconstruction (ASR).
Then, to uncover candidate genes and developmental path-
ways that underlie variation in ovipositor bristle number,
we used pooled genome-wide association mapping (pool-
GWAS) [23,24] within the herbivorous species S. flava. Finally,
we sought to confirm our pool-GWAS results by genotyping
individuals and estimating the effect size of a single-nucleotide
polymorphism (SNP) that reached genome-wide significance.
2. Materials and methods
(a) Phylogeny reconstruction
We estimated a phylogeny of Scaptomyza, including the sister
clade ofHawaiianDrosophila, using 11 genes and 95 taxa (electronic
supplementary material, table S1). We expanded a previous phylo-
genetic dataset [25] with five additional taxa: two with sequenced
genetic markers (S. nr. nigrita (Nevada) and S. montana (Arizona)
[26]), and three obtained in this study fromCalifornia (S. nr. nigrita,
S. montana, and an undescribed species S. sp). DNA extraction and
PCRmethods have been described previously [27]. PCR amplicons
were cleaned and Sanger sequenced in both directions, and
trimmed and manually aligned to the other taxa using MAFFT
v7.450. We estimated a species tree using the alignment of concate-
nated genes by maximum likelihood (ML) in RAxML [28], and a
time-calibrated tree by Bayesian inference using MrBayes v.3.2.4
[29] and BEAST v.2.4.6 [30]. Alignment partitioning and model
implementation are described in the electronic supplementary
material, Methods. Complete phylogenies are reported in the
electronic supplementary material, figures S1 and S2.

(b) Ovipositor trait evolution
To test whether ovipositor bristle number changed significantly
during the evolution of herbivory, we performed PGLS regression
[31], including the following predictor variables: larval diet
(herbivorous versus non-herbivorous) [27], ovipositor length,
phylogenetic relatedness and source of bristle counts (literature
versus this study). We collected bristle counts from illustrations
or images from the literature, or directly from wild or laboratory-
reared individuals (electronic supplementary material, table S2).
Where available, we averaged across multiple individuals and lit-
erature sources. Because distinguishing between sensilla types
from the literaturewas not always clear, we counted all visible bris-
tles and hypogynial long sensilla on one oviscapt, omitting the
inconspicuous hypogynial short sensilla. We obtained ovipositor
lengths from literature sources either from published measure-
ments, or using provided scale bars. Ovipositors of wild and
laboratory-reared flies (n = 2–10 per species) were mounted on
slides with Permount mounting medium (Fisher Scientific) and
coverslips, and photographed using an EOS Rebel T3i camera
(Canon) mounted onto a Stemi 508 stereo microscope (Zeiss)
with a 1000 µm scale bar. Ovipositor length was then measured
using ImageJ.

We performed PGLS regression using ape [32] and picante
[33] packages in R. Comparing models of trait evolution (Brow-
nian motion, Ornstein–Uhlenbeck, early burst, and white noise)
for bristle number using AICc in the geiger R package [34], we
selected Brownian motion as the best fit (electronic supplemen-
tary material, table S3). The degree of phylogenetic signal in
the residuals was estimated using Pagel’s lambda (λ) [35]. To
visualize correlated evolutionary changes in diet and bristle
number, we mapped onto the phylogeny estimated ancestral
states of both traits by ML using phytools [36] and ape [32].
We compared models of trait evolution (equal rates, symmetric
and all rates different) for larval diet and identified equal rates
as the best fit (electronic supplementary material, table S4).

(c) Mapping population and measurements for pooled
genome-wide association mapping

To identify genetic polymorphisms contributing to variation
in bristle number, we used a pool-GWAS to detect allele fre-
quency differences between pools of individuals with extreme
phenotypes from the same population. Two S. flava outbred
laboratory populations were founded from collections on
mustard plants, one larvae per plant, in Portsmouth, NH, USA
(both within 0.1 km of 43.10068, −70.81246): one population
(NH1) was founded from 79 larvae from Turritis glabra and the
second (NH2) from 58 larvae from T. glabra and Barbarea vulgaris.
Within each population, newly eclosed adults were transferred to
one mesh cage containing Arabidopsis thaliana (Col-0 accession)
and allowed to mate randomly. In each population, over 1200 off-
spring (G1) were reared on a mixture of T. glabra and B. vulgaris,
allowed to mate randomly, and adult female offspring (G2) were
preserved in 95% ethanol and phenotyped for the GWAS (elec-
tronic supplementary material, figure S3 illustrates the mating
scheme). (Flies were collected and bred on different hosts for a
separate study on host adaptation.)

We mounted ovipositors on slides as described above, count-
ing only ventral bristles (figures 1c and 3a), summed across both
oviscapts. We excluded posterior bristles, which were largely
invariable in number, and lateral bristles because we speculated
that their involvement in leaf-cutting may be limited due to their
smaller size. We quantified ovipositor length as described above,
and also wing chord (proxy for body size), measured from the
wing base to the apex following the third longitudinal vein
(figure 3a). Two independent measurements were averaged per
specimen. Linear regression analyses in a pilot experiment
(NH1/NH2 flies, N = 100) revealed that bristle number was posi-
tively correlated with ovipositor length (B = 0.097 [s.e. = 0.025]
pegs per micrometre length, R2 = 0.134, p = 0.0001), but not
wing length (B = 0.001 [s.e. = 0.002], p = 0.25). We therefore quan-
tified both ovipositor length and bristle number for all
individuals (NH1, N = 308 flies; NH2, N = 422 flies).

Narrow-sense heritabilities of ovipositor length and bristle
number were quantified using mother–daughter regression;
details are presented in the electronic supplementary material,
Methods.
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(d) Pooled genome sequencing
Flies in the NH1 and NH2 populations were split into two
phenotypically extreme pools per population (four pools: NH1-
low, NH2-low, NH1-high, NH2-high), composed of 60–85
females in the upper or lower 20% tail of the distribution of
residual bristle number. Residual bristle number was determined
through a linear regression of ovipositor bristle number against
ovipositor length using the lm function in R. Flies were hom-
ogenized with stainless-steel beads and a TissueLyser (Qiagen).
Genomic DNA was extracted using a DNeasy Blood and
Tissue Kit (Qiagen). One Illumina library per pool was con-
structed with 100 bp paired-end reads and a 350 bp insert size.
Each library was sequenced on one half lane on an Illumina
HiSeq 2500 at Arizona State University.
Proc.R.Soc.B
289:20221938
(e) Read mapping, pooled genome-wide association
mapping and gene ontology enrichment analysis

Illumina reads were mapped to the S. flava reference genome
(GenBank accession no. GCA_003952975.1) and filtered follow-
ing best practices for pooled genome sequencing [37]. Statistical
significance of between-pool allele frequency differences per
site was estimated using the Cochran–Mantel–Haenszel test
[38]. We identified and conservatively sought to correct for a
slight inflation of p-values [39]. However, because the p-value
distribution was non-uniform with an excess of higher and
lower values, typical corrections based on the observed versus
median test statistic gave unsuitable inflation factors. We there-
fore regressed observed against expected –log10(p) values with
the intercept constrained to 0 and divided each –log10(p) value
by the slope of the regression line [40]. Further details are
presented in the electronic supplementary material, Methods.

To identify genes located in or near the top SNPs (ranked by
p-value), we located the nearest annotated gene in either direction,
using genome-wide annotations for S. flava [10]. We checked for
unannotated genes between the SNP and closest annotated gene
by comparing the spanning sequence against the D. melanogaster
RefSeq protein database, using NCBI BLASTx with default set-
tings. Gene functions were gathered from the Gene Summary,
Gene Ontology Annotations and linked publications in Flybase
(release 2020_01) [41]. To better interpret the pool-GWAS results,
we profiled linkage disequilibrium (LD) and population structure
in several wild populations of S. flava in Massachusetts and
New Hampshire. Further details are presented in the electronic
supplementary material, Methods.

To determine if any predicted functions were overrepresented
among genes intersecting the top GWAS associations, we per-
formed a Gene Ontology enrichment test using GOWINDA,
which implements a permutation-based approach tailored to the
properties of GWAS datasets [42]. Full details, including orthol-
ogy-based functional annotation and extension of gene models
to capture regulatory regions, are described in the electronic
supplementary material, Methods.
( f ) Reproducing pooled genome-wide association
mapping association for a candidate single-
nucleotide polymorphism

Pool-GWAS can be confounded by uneven contributions of indi-
viduals to pools and biases in sequencing and read mapping. To
verify our pool-GWAS results using an approach robust to these
confounding factors, we genotyped individual females at one of
the top SNPs and estimated its effect size. The SNP was chosen
because of its close proximity to G alpha i subunit (Gαi), a gene
involved in asymmetric cell division of sensory organ precursor
(SOP) cells from which bristles are derived [43]. Ovipositor
bristle number and length were measured as described above.
Genomic DNA was extracted from 74 females (NH1/NH2
(G2), electronic supplementary material, table S5), and a
target region of 500 bp around the SNP was Sanger sequenced.
Bristle number was modelled in a generalized linear model,
assuming an additive effect of the major allele, using the lm func-
tion in R. Additional details are presented in the electronic
supplementary material, Methods.
3. Results
(a) The evolution of herbivory coincided with an

increase in ovipositor sensilla number within the
Scaptomyza lineage

PGLS methods revealed that ovipositor sensilla number
was strongly influenced by larval diet (herbivorous versus
non-herbivorous) (F1,19 = 5.801, p = 0.028), phylogenetic
relatedness (Pagel’s λ = 1) and by ovipositor length (F1,19 =
4.655, p = 0.047), but not by source type (literature versus this
study) (F1,19 = 1.401, p = 0.254) (electronic supplementary
material, table S6). ASRs of ovipositor sensilla number
and larval diet similarly suggested that ovipositor sensilla
number increased coincident with the evolution of herbivory
in Scaptomyza, estimated approximately 10.4 million years
ago (Ma) (8.2–13 Ma, 95% highest probability density)
(figure 2a; electronic supplementary material, figure S4). Rela-
tive to interspecific differences, variation within species was
low (figure 2b).

(b) Genome-wide association mapping on ventral
ovipositor bristle number in Scaptomyza flava

Variation in ovipositor bristle number followed a continuous
distribution in the NH1 and NH2 outbred laboratory popu-
lations of S. flava (figure 3a,b), typical of a quantitative trait
controlled by multiple loci. Linear regression of ovipositor
bristle number from mother–daughter pairs, controlling for
the effect of ovipositor length, revealed that additive genetic
variation accounted for half of this phenotypic variation ( p =
0.034, h2 = 0.50 ± 0.27 s.e.; figure 3c). By contrast, variation in
ovipositor length was not heritable ( p = 0.31).

We next sought to characterize the genomic architecture
underlying this variation using a pool-GWAS. Because ovipo-
sitor length was positively correlated with bristle number
(figure 3d ), pools were constructed by adjusting bristle
number relative to that expected from ovipositor length
(figure 3e). This approach should interrogate bristle number
independently of ovipositor size and minimize noise from
non-heritable variation in ovipositor length. Mapped reads
from whole genome re-sequencing of the four pools had a
mean experiment-wide coverage depth of 166X per poly-
morphic site (per pool: NH1-low: 31x; NH1-high: 38x;
NH2-low: 23x; NH2-high: 53x). After excluding low-fre-
quency variants (1.6 million SNPs remaining), we found an
excess of SNPs with significantly differentiated allele frequen-
cies among high- and low-bristle number pools (figure 4a),
with five and 19 significant SNPs at 5% and 10% false discov-
ery rate (FDR) cutoffs, respectively (table 1; electronic
supplementary material, table S7). Because LD decays in S.
flava at a rapid rate like that seen in D. melanogaster
(figure 4b), SNPs showing strong associations are likely in
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close proximity to causal polymorphisms or are causal them-
selves. LD decay rates were similar across several populations
in Belmont, MA and Portsmouth, NH, and across two host
species (T. glabra and B. vulgaris) (electronic supplementary
material, figure S5). We cannot fully discount the possibility
that long-range LD caused by undetected population structure
could cause false associations between ovipositor bristle
number and candidate SNPs. However, we did not find evi-
dence for genetic population structure (Fst) across these
populations (electronic supplementary material, figure S6).

Many of the top SNPs (electronic supplementary material,
table S7), including those reaching genome-wide significance
(FDR≤ 0.05, table 1), were located near genes involved in
neural development or neural cell fate specification (i.e. G
protein alpha i subunit, sloppy paired 2, tenascin accessory), cytos-
keleton organization (i.e. muscle-specific protein) and cuticle
development (i.e. cuticular protein 11B).

(c) Gene ontology enrichment analysis on candidate
single-nucleotide polymorphisms

To gain insight into developmental mechanisms that may
contribute to variation in ovipositor bristle number, we
tested for enriched gene ontology (GO) annotations among
genes intersecting SNPs with the strongest GWAS associ-
ations (top 0.1% and 0.005% of p-values genome-wide).
Using a restricted set of GO terms to minimize redundancy,
we uncovered a single enriched term: RNA polymerase
II-specific DNA-binding transcription repressor activity
(GO:0001227; table 2; electronic supplementary material,
table S8). Many of the transcriptional repressors identified
fine-tune gene expression levels during the specification of
cell fate during neural development. Notably, the strongest
GWAS association among transcriptional repressors fell
within the gene hairy (h), which in D. melanogaster functions
in the establishment of bristle precursor positioning from
within proneural clusters [44].

We further tested for enrichment using the exhaustive list
of all GO terms. Although no terms were enriched after
applying a strict Bonferroni correction, two terms surpassed
a nominal cutoff of p < 0.001, and both reflect broadly con-
served developmental functions: phosphatidylinositol (PI)
biosynthetic process and establishment of cell polarity
(table 2; electronic supplementary material, table S8). Many
of the candidate genes annotated with PI biosynthetic process
(GO:0006661) are kinases and transferases involved in the
production of PI derivatives, which act as signalling mol-
ecules that regulate cellular growth and patterning [45,46].
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Notably, the establishment of cell polarity (GO:0030010)
precedes the differentiation of sensory organ precursors into
distinct neural cell types through asymmetric cell division
[47]. G protein α i subunit (Gαi) was one of the cell polarity
genes identified and was also one of the strongest
pool-GWAS associations (figure 4c).
(d) Reproducing pooled genome-wide association
mapping association at a top candidate single-
nucleotide polymorphism (near the gene Gαi)

To confirm that the pool-GWAS adequately estimated allele
frequencies, we focused on a SNP in the 50 UTR of Gαi, one
of the strongest pool-GWAS associations. We phenotyped
and genotyped individual adult female flies at this locus
and found that bristle number increased by 0.58 per major
allele carried (β = 0.11 s.d., t68 = 2.88, p < 0.005; figure 4d; elec-
tronic supplementary material, table S9). This SNP explained
9.5% of the total variance in bristle number (partial adjusted
r2). As expected given our study design, the SNP did not
have an effect on ovipositor length (β = 0.02 s.d., t69 = 0.177,
p > 0.05; electronic supplementary material, table S10). Out
of five variant sites (greater than or equal to 0.05 minimum
frequency) in the sequenced region, two were in strong LD
with the focal SNP (electronic supplementary material,
table S11). Further study will be necessary to identify the
causal variant(s) in this region.
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4. Discussion
The plant-penetrating ovipositor of herbivorous insects pre-
sents an excellent opportunity to study the evolution and
genomic architecture of a complex morphological innovation,
given its clear role in egg-laying and its amenability to be
decomposed into simpler quantitative traits, such as ovipositor
size and bristle number. We focused on ovipositor evolution
in the genus Scaptomyza, in which herbivory has evolved
relatively recently, ca 10.4 Ma. The wealth of data from the
Drosophila literature made our analyses possible: genitalic
morphological data available from numerous taxa to investi-
gate evolutionary shifts in bristle number across species, and
genetic and development knowledge of bristle number in
D. melanogaster to understand the genetic architecture
underlying variation at the population level in S. flava.

From a macroevolutionary perspective, we found that ovi-
positor sensilla number underwent a marked increase that
coincided with the evolution of herbivory within Scaptomyza,
a significantly larger shift than expected from the distribution
of background rates of evolution across the phylogeny
(figure 2a). Surprisingly, we also found that ovipositor sensilla
number is evolutionarily malleable, repeatedly increasing and
decreasing across the phylogeny, with a fivefold range across
Scaptomyza. High variability was similarly seen within species,
including a 1.5-fold range in S. flava. The lack of strong evol-
utionary constraint over both macro- and microevolutionary
timescales, along with heritable standing genetic variation
within populations, suggests that ovipositor sensilla number
may be highly accessible to adaptive evolution. However, con-
sidering there was only one occurrence of the evolution of
herbivory among sampled species, it will be necessary to test
whether the same patterns exist in other independently
evolved herbivorous lineages, such as those that include D.
suzukii, Scaptodrosophila notha and herbivorous Lordiphosa.
Further research on herbivorous drosophilids could also test
whether heritable variation in ovipositor bristle number
could be selected upon for divergent host use (i.e. plants of
varying leaf or fruit skin toughness), as seen in fig wasps and
pine-specialized sawflies [48,49].

Our phylogenetic analysis (PGLS) suggested that
increased sensilla number may have evolved in addition to
or partly as a result of ovipositor elongation. A longer
ovipositor can accommodate more bristles, and increased
ovipositor length has been studied in D. suzukii as a key
trait to facilitate cutting into ripe fruit [50]. It will be necess-
ary to examine whether these morphological traits are linked
at molecular and developmental levels. Our GWAS in S. flava
should have, nonetheless, targeted variation in ovipositor
bristle number, rather than length, considering we used bris-
tle counts adjusted by length, and only bristle number (not
length) exhibited narrow-sense heritability (figure 3c).

Pinpointing genetic changes that gave rise to traits
that evolved Ma can be difficult because genetic architectures
may differ over short versus long timescales [51]. Still, GWAS
can illuminate genes and gene functions that shape standing
phenotypic variation and may contribute to evolution over
longer timescales. Our GWAS results indicate that broadly
conserved neurodevelopmental genes, such as Gαi and slp2,
play a role in ovipositor bristle density (table 1). Genes encod-
ing transcription repressor proteins were significantly
enriched near the strongest GWAS associations, with the
majority involved in neural development and neuron differ-
entiation, and are regulated by or regulators of the Notch
signalling pathway (GO:0001227, table 2). For instance, four
genes (h, E(spl)mβ-HLH, dpn and Hey) repress basic helix–
loop–helix (bHLH) proteins, which are important regulators
of neurogenesis. These results are consistent with existing
knowledge that insect sensilla are developmentally derived
from neural precursor cells (SOPs). Bristle patterning begins
with expression patterns of proneural genes, like the
achaete–scute complex, that generate proneural cell clusters.
Within these clusters, the selection of the SOP is determined
by lateral inhibition mediated by Notch signalling, followed
by SOP differentiation through asymmetric cell divisions
into cells that form the shaft, socket and sheath, and mechan-
osensory and chemosensory neurons that innervate the
sensilla [52]. We thus speculate that mutations in or near
genes involved in SOP development could cause shifts in
SOP patterning, spacing or density, thus producing more
bristles. E(spl)mβ-HLH is a particularly strong candidate
( p-value = 6.07 × 10−5), as it is directly regulated by Notch
and represses the activity and expression of proneural
Achaete and Scute proteins [53].
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In other Drosophila species, genes involved in neural
development also underlie differences in bristle number on
the male genitalia and sexcombs of the forelegs [54]. From
the same overrepresented GO category of transcriptional
repressors, the top-scoring SNP ( p-value = 1.73 × 10−6) was
located in the gene hairy (h), a direct repressor of achaete
[55]. RNAi knockdown of hairy in Drosophila has validated
its involvement in male genitalic clasper size and bristle
number, and association mapping has shown that it falls
within a narrow genomic region underpinning divergence
in clasper bristle number among sister species of Drosophila
[56]. Its role in bristle and genital development, along with
its contribution to intra- and inter-species variation in bristle
number, make hairy a strong candidate for ovipositor bristle
variation. It also presents an opportunity to investigate gen-
etic parallelism for bristle number variation across the body,
between sexes and across species.

Studies on the genetic architecture of adaptive traits have
largely focused on monogenic, Mendelian traits with large
effect loci and lower detection thresholds than genetically
complex traits [57–59]. Ovipositor bristle number represents
a tractable quantitative trait for genetic dissection because
of its meristic nature, high variability, heritability and clear
importance in facilitating entry into a new niche. Despite
having a polygenic architecture similar to many quantitative
traits—consisting of many, small effect SNPs—we still were
able to detect a SNP with a moderately large effect (con-
firmed by individual genotyping). Our results suggest that
pool-GWAS can be a viable method for pinpointing genomic
regions that underlie quantitative trait variation. Candidate
SNPs can then be interrogated through functional experimen-
tation to understand how alternative alleles influence
cell division, size expansion and reorganization during devel-
opment [50]. Ultimately, this could illuminate how
incremental changes could have created this key trait in
herbivorous insects.

Data accessibility. All data files and scripts are available from the
Dryad Digital Repository: https://datadryad.org/stash/share/
q5fOC0W2LtFDayCHVQzu1ZqxBQCQLvR_WxLjXzznoGw [60].
Sanger sequences for estimating the Scaptomyza phylogeny were
uploaded to GenBank (MH938262-MH938270). Available at NCBI
sequence read archive are Illumina sequences for the pool-GWAS
(SRR11252387-SRR11252390), and for evaluating LD (SRR15275350–
SRR15275365; SRR20722523–SRR20722528). Sanger sequences for
replicating the Gai SNP effect size were deposited on GenBank
(MH884655–MH884734).
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