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The transition to herbivory by insects is associated with distinct

genomic signatures. Sequenced genomes of extant herbivore

species reveal the result of these transitions, but in lieu of

comparisons between herbivorous and non-herbivorous

lineages that diverged recently, such datasets have shed less

light on the evolutionary genomic processes involved in diet

shifts to or from herbivory. Here, we propose that the

comparative genomics of diet shifts between closely related

insect herbivores and non-herbivores, and within densely-

sampled clades of herbivores, will help reveal the extent to

which herbivory evolves through the co-option and subtle

remodeling of widely-conserved gene families with functions

ancestrally distinct from phytophagy.
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Introduction
The genomes of arthropod herbivores bear the distinct

signatures of phytophagy. Herbivore genomes tend to be

enriched, albeit idiosyncratically, in gene functions

involved in digesting plant primary metabolites and

detoxifying plant secondary compounds, as well as in

chemosensory functions for locating and identifying hosts

[1]. Beyond these general observations, there is much we

do not know about how herbivory shapes the evolution of

arthropod genomes. This is because many studies of

arthropod herbivore genomes, including in the phytopha-

gan (Curculionoidea and Chrymeloidea) beetles, Lepi-

doptera and Acari, although interesting, do not necessarily
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illuminate the process of transitioning to a diet of living

plant tissues, but rather subsequent evolution in these

lineages after they transitioned to herbivory hundreds of

millions of years ago [2��,3��].

Relyingoncomparisonsbetween moreclosely-relatedtaxa,

a handful of studies are emerging that offer new insight into

evolutionary processes underpinning diet shifts in insects.

Drosophilid fly lineages that shifted from detritivory

(microbe-feeding) to herbivory exhibit a sequential loss

ofyeast-tuned olfactory receptors [3��], andthose with diets

that vary in toxicity exhibit predictable differences in the

sizes of gene families encoding detoxifying enzymes

[4�,5��] (Figure 1). Based on a combination of transcriptome

and genome sequences, herbaceous beetles exhibit line-

age-specific expansions of detoxification and digestion-

related gene families relative to predaceous suborders,

and further display higher gene gain rates, lower loss rates,

and higher absolute numbers of genes overall [6��]. These

results, coupled with comparable results on diet shifts in

other invertebrates and mammals [8,7], lend support to the

general hypothesis that diet shifts in insects are associated

with predictable evolutionary changes in genome architec-

ture, most notably gene duplications, losses, and even

parallel amino acid substitutions.

A challenge with broad-scale comparisons is that the passage

of time tends to obscure more subtle changes in the pace and

dynamics of genome evolution, especially because inferring

events deep within phylogeniesor along long branches is rife

with uncertainty. Diet shifts may be correlated not just with

changes in gene family size, which lend to straightforward

comparisons among taxa, but with shifts in gene birth and

death rates that require dense taxon sampling and more

complex models in order to reliably infer. Depending on

the ancestral repertoires, gene loss may actually outpace

gene gain, for example [7,9�,10�,11]. Key unresolved ques-

tions include: What are the functional underpinnings of

these diet shifts? What is the relative balance of selective,

demographic and neutral processes acting on key genes/

functions that drive highly uneven patterns of birth/death

withinandacrossgenefamilies [4�,12,13�]?Ouraimhere is to

address some of the emerging genomic patterns associated

with herbivory in insects, and going forward, to identify the

types of studies needed to more fully understand how the

process of diet shifts shapes the evolution of insect genomes.

Gene family dynamics and dietary shifts
The pervading idea on gene family dynamics and the role

of diet shifts from the literature is that the chemical
Current Opinion in Insect Science 2019, 36:149–156

mailto:agloss@uchicago.edu
http://www.sciencedirect.com/science/journal/22145745/36
https://doi.org/10.1016/j.cois.2019.10.003
https://doi.org/10.1016/j.cois.2019.09.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cois.2019.09.005&domain=pdf
http://www.sciencedirect.com/science/journal/aip/22145745


150 Special section on evolutionary genetics

Figure 1
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Phylogeny of the insect orders, after [52]. Indicated are the number of herbivorous and non-herbivorous species in each order, from Ref. [53], and the number

of annotated genomes in each group, from the NCBI database in September 2019. Insets display diet variation in families of polyphagan beetles (top), modified

from Ref. [6��]; families of Bibionomorpha flies (middle), modified from [44]; and Drosophila and Scaptomyza flies (bottom), modified from [13�]. Primary feeding

modes are indicated in color to the right of each, from Refs. [6��,48,54,53], respectively. Notable cases where there is exceptional diversity of feeding modes

within groups are indicated by additional colored squares.
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complexity of an organism’s dietary niche favors (or is

enabled by) complexity of detoxification and chemosen-

sory gene repertoires [1,14]. One general prediction from

this literature is that plants are a chemically complex

resource, so herbivores will have larger chemosensory and

detoxification repertoires than animals with other diet

types. Notably, such ideas could be confounded with

those associated with diet breadth (e.g. specialization

versus generalization): generalists encounter more chem-

ical diversity and will have larger repertoires than

specialists [15,16]. However, these insights are derived

from shifts in hosts or changes in host breadth in already-

herbivorous lineages, from which the vast majority of

studies derive. To what extent do changes within

herbivorous lineages recapitulate the genomic dynamics

of transitions to/from herbivory in insects? Rane et al.
[17��] surveyed 160 species with sequenced genomes and

found that omnivorous insect species tend to have rela-

tively more detoxification genes than carnivores and

herbivores, as do species that feed on tissues with more

complex defensive chemistry. As compelling as this is,

raw gene counts such as these don’t reveal the evolution-

ary processes that generated the gene family repertoire

differences, or the order of the genetic changes involved

in the evolution of herbivorous insects [4�].

Consider dietary shifts in the relatively recently-derived

mammals. Transitions associated with herbivory and

insectivory reveal the need to digest recalcitrant carbohy-

drates such as chitin or cellulose for nutrient acquisition

[18]. Foregut fermenting and herbivorous ungulates and

langur monkeys convergently evolved lysozyme enzymes

able to function at low pH in the stomach, allowing them

to lyse bacterial cells being cultivated on plant material in

their stomachs [19]. In turn, these herbivores have also

repeatedly evolved duplicated and neofunctionalized

gastrointestinal RNases to efficiently degrade bacterial

RNA [20], a rich source of nitrogen. Similarly, three serine

protease genes (PRSS1, PRSS36 and CPB1) encoded in

giant and red panda genomes have convergently evolved

to facilitate uptake of essential amino acids lysine and

arginine [21]. Finally, ancestral mammals are hypothe-

sized to have been insectivorous, and new genomic

evidence suggests that five copies of a gastrointestinal,

acidic chitinase gene (CHIA) were present in the common

ancestor of all placental mammals [22]. The number of

CHIA genes is associated with the proportion of

arthropods in the diet, and were lost entirely in many

herbivorous lineages. There are clear parallels with the

few studies that have focused on this question in insects.

This includes the origin, via horizontal gene transfer

(HGT), of plant cell wall-degrading enzymes (PCWDEs)

several times independently in herbivorous beetles [23].

Mammals also illustrate the dramatic changes that can

occur in chemosensory gene repertoires with diet shifts.

Since their split from terrestrial artiodactyls, cetaceans
www.sciencedirect.com 
have experienced remarkable erosion of both olfactory

receptor genes and the attendant peripheral and central

nervous system components. This is most extreme in

toothed whales, which lack olfactory nerves, the olfactory

bulb, have few intact olfactory receptor genes [24] and

have lost all gustatory receptor genes required for sweet,

umami and bitter taste [25]. The umami receptor gene

TAS1R1 was also lost independently in the ancestors of

the bamboo-specialist (and distantly related) giant panda

and red panda [21].

Finally, an illustrative example of the genomic under-

pinnings of a diet shift can be found in the plant parasites

in the genera Striga and Triphysaria. The origin of plant

parasitism principally involves endogenous changes in

the regulation of plant genes ancestrally involved in

non-parasitic functions, rather than genes acquired by

HGT or functions acquired by symbiosis [26]. Most core

parasitism genes have clear orthologs in non-parasitic

relatives, such as those encoding subtilisin-like serine

proteases that have roles in protein degradation/proces-

sing and signal transduction in non-parasitic plants, as

well as genes involved in symbiotic nodulation and in root

and flower biology [27].

Altogether, phylogenetically-informed studies from

mammals and plants bolster the hypothesis that trophic

shifts to living plants are associated with distinct

evolutionary genomic signatures. Genic novelty, conver-

gence and changes in the dynamics of gene gain and loss

are notable features of insect herbivore genomes. But less

obvious is the degree to which transitions to herbivory

involve co-option and remodeling of ancestral genes and

gene networks with roles not previously associated with

herbivory [2��,13�,28�]. Comparative genomics studies

from more recently-derived mammals suggest that the

focus should be on relatively recently derived (<50

million years) herbivorous insect lineages to have the

best opportunity for mechanistic insight.

Gains, losses and remodeling in insect
herbivores
Diet shifts represent radical changes in physiology,

requiring novel gene functions. True and Carroll [29]

describe four ways in which genes acquire new functions:

changes in amino acid sequence, changes in gene regula-

tion, the assembly of new genes out of the fragments of

pre-existing gene structures, and principally, gene dupli-

cation (Box 1). The genomic signatures of dietary shifts in

herbivorous insects should include each of these pro-

cesses [30�], which can be identified in three functional

categories implicated in herbivory.

Chemosensory

Insects use various chemosensory organs, which express

odorant-binding proteins, olfactory receptors, and gusta-

tory receptors, to select suitable hosts for oviposition and
Current Opinion in Insect Science 2019, 36:149–156
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Box 1 Gene duplication and the evolution of gene families

Gene duplication and loss are a source of novel phenotypes in plants

and animals [49]. Initially, new gene copies replicate the functions of

their original copies or else change optimal gene dosage, and

therefore are often selectively neutral or unfavorable [50]. To persist,

they must either acquire novel functions (neofunctionalization) or else

partition ancestral functions between copies (subfunctionalization).

Similarly, gene losses can change or be associated with a change in

the nature of the behavioral response or trophic relationship with an

ancestral diet [3��]. Many variations exist on these themes. For

example, multi-functional genes might go to fixation in the absence

of environmental change if new mutations allow for functional sub-

division between gene copies (subfunctionalization). If new functions

interfere with old ones (antagonistic pleiotropy), then gene duplicates

are potentially targets for new mutations that allow for selective

resolution of pleiotropic conflicts [escape from adaptive conflict, 51].

The persistence of gene duplicates that occur before dietary shifts

might depend on the complementary subdivision and acquisition of

novel functions in both gene copies (neo-subfunctionalization; 30�).
Gene family size following duplication can be governed by entirely

neutral, stochastic processes. Global processes governing total

genome size also affect the fate of gene families involved in chemical

adaptation to host plants.
feeding. Studies of chemosensory receptors in well-

sampled clades provide some of the most informative

pictures of gene family dynamics in insect herbivores

[31,32]. Expansions are often targeted to a few subfami-

lies (in tandem arrays) and coupled with substitutions that

change function and/or are predicted to be positively

selected, which suggests selection to elaborate the

functions of subsets of key genes. Some studies focus

on gene expansions, others on losses, and others on total

gene family size [9�,33,34�]. Genomic studies of turnover

rate (i.e. cumulative rate of gene gain and loss events)

are lacking, as are datasets to conduct them [but see

Refs. 2��,35]. Although the Drosophilidae are largely

not herbivorous, most species tend to feed on decaying

plant and microbial material and encounter plant and

microbial toxins as a result. Comparisons of chemosensory

gene turnover rate are intriguing [36], although by neces-

sity are focused on a small number of recently diverged

taxa and potentially confounded by demography [31]. A

new study on chemosensory gene evolution in a truly

herbivorous drosophilid (Scaptomyza flava) and its close

relatives found that the transition to herbivory was cou-

pled with an increased turnover rate in olfactory receptor

and odorant binding, but not gustatory receptor or iono-

tropic receptor gene families [2��]. Comparisons of overall

gene family size would have missed these potentially

important evolutionary patterns.

Digestion

Herbivory requires unique feeding behaviors and physi-

ology that differs from carnivory, insectivory or other

diets. Insect herbivores ingest macromolecules such as

proteins, polysaccharides, and lipids, but they also ingest

defensive chemicals that target digestion itself. A princi-

pal means of defense against herbivory by plants is the
Current Opinion in Insect Science 2019, 36:149–156 
production of proteolytic inhibitors (PIs) and molecular

competitors that diminish the activity of enzymes

involved in digestion. Insects respond to plant PIs by

several mechanisms, including increasing copy number

and expression of digestive or insensitive proteases and

hydrolysis of plant PIs. Among the expanded orthologous

groups in herbivorous beetles relative to predatory ones,

for example, are serine and cysteine proteases with

functions assumed to be related to digestion [6��].

Detoxification

Plants express defensive chemicals, which require defence

mechanisms on the part of insects, including detoxification,

sequestration, and/or excretion. Some of the most thorough

work has concentrated on the classical case of the heme-

binding cytochrome P450 monooxygenases (CYPs). CYPs

can be roughly partitioned into two types, those involved in

the biosynthesis of physiologically-important chemicals such

as steroids and cholesterol, and those involved in the detoxi-

fication of xenobiotics [37]. In both vertebrates and inverte-

brates, the detoxification-types have evolved from the

biosynthesis-types and diversified following ancient duplica-

tion of biosynthesis-types. As Feyereisen describes, CYPs

subsequently diversified and ‘bloomed’, probably due to a

combination of selective and neutral processes acting on gene

birth and death rates [38]. In each of these cases, gene

duplication fuels the evolution of novel functions necessary

for niche adaptation, but coupled with complex patterns of

genome dynamics that effectively remodel gene families.

Johnson et al. [39��] compared CYP diversity in florivorous

Bombus and Apis species to eusocial carnivorous Polistes spe-

cies, and found evidence for positive selection on and expan-

sion of genes encoding CYP6AS, which metabolize flavonols

in nectar and honey. They hypothesized that these changes

associated with the shift from carnivory to florivory in bees.

Island populations of Drosophila yakuba have specialized on

the toxic fruits of noni, much like its island-endemic and

relative Drosophila sechellia. In D. sechellia and the herbivorous

Scaptomyza spp., shifts from microbe-feeding/detritivory to

folivory and frugivory are associated with an increase in toxin

resistance, respectively [2��,13�,40]. In D. yakuba, candidate

genes include genes involved in juvenile hormone biosyn-

thesis and ecdysteroid signaling, as well as genes in the

enigmatic Osiris cluster with poorly known functions that

may be directly involved in resistance to octanoic acid, the

latter mirrored in D. sechellia as well as Scaptomyza [4�,28�].
Whenknown,Osirisgeneproductshavediverserolesandmay

play an especially important one in adaptation to toxic diets [

41]. In the evolution of herbivorous S. flava, Gloss et al. [2��]
found a small net loss in genes encoding CYPs and no net

change in glutathione S-transferases, compared to the closest,

non-herbivorous relatives. However, turnover rates were

higher for both of these gene families in herbivorous

Scaptomyza compared to non-herbivorous relatives (Figure 2),

driven in part by recurrent duplications of genes with key

functions.  The CYP gene cyp6g1 expanded from one or two

copies inancestralDrosophilaandScaptomyza [42] tosixcopies
www.sciencedirect.com
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Figure 2
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Accelerated turnover of genes encoding glutathione S-transferases (GSTs) coupled with a transition from microbe-feeding to herbivory in

Scaptomyza. This figure was reproduced from Ref. [2��], wherein full results and methods can be found. (a) Genes encoding GSTs were annotated

in the genomes of eight drosophilids with diverse ecologies. Among these species, only S. flava is herbivorous. Divergence dates are taken from

[28�]. (b) Total number of GST genes in each genome. (c) Maximum likelihood estimates of GST gene gain and loss rates in each taxon. Of the

eight taxa, only S. flava exhibits a rate of GST turnover (cumulative gains + losses) that is significantly higher than the background rate across the

phylogeny as a whole. Yet because the total number of GST genes in S. flava falls within the range observed across the non-herbivorous

Drosophila, a focus on overall gene family size would fail to detect this gene family ‘remodeling’ coupled with a transition to herbivory.
in S. flava. Thisgene is frequently involved in the evolutionof

insecticideresistance inotherdipterans throughanincrease in

gene dosage, via cis-regularly mutations or gene duplication

events [42]. The GstE5-8 gene expanded from two to five

copies in S. flava since its divergence from non-herbivorous

species. Remarkably, three of these GstE5-8 paralogs in

S. flava encode enzymes that are the most efficient at detoxi-

fying isothiocyanates (mustard oils), the principal toxins of

their Brassicales host plants, among all known animal GSTs

[2��]. It is possible, although speculative, that over longer

periods of time, increased turnover rates could translate into

differences in absolute numbers of genes encoding detoxifi-

cation enzymes [e.g. Ref. 17��], but clearly increases in the

size of entire gene families (e.g. CYPs, GSTs) are not neces-

sary for obligate herbivory to evolve in insects. Rather the

gene family expansions inferred in some herbivores may be

more associated with changes in host breadth (e.g. in

the evolution of host generalism).

Next steps
Outside of acquisition of functions by HGT or symbiosis,

the transition to herbivory is hypothesized to derive from

endogenous mechanisms not previously associated with

herbivory. If so, then the question is how to identify these

mechanisms? A central challenge is identifying phyloge-

netically and statistically robust sets of taxa. Most
www.sciencedirect.com 
evidence supporting the prediction that the complexity

of plant chemical defenses requires diverse detoxification

strategies to enable dietary transitions to herbivory is

noisy, lacks phylogenetic robustness, and/or is anecdotal.

This is largely due to the uneven (and still relatively

sparse) sampling of different diets across the insect phy-

logeny. The non-independence of different factors [diet

type (e.g. carnivore versus herbivore), diet subtype (e.g.

leaves are more complex than sap)] and diet breadth

across the phylogeny also confounds inferences [17��].

While evidence for dramatic changes in gene family size

is largely lacking, evidence is emerging that rates of gene

turnover in detoxification and chemosensory gene fami-

lies are accelerated in herbivores, particularly in genes

that interact with key defensive secondary compounds. It

would be unsurprising that rates of gene birth and death

are relatively balanced: Important genes for plant chemi-

cal interactions are duplicated but genes important for a

non-herbivorous lifestyle are lost. This means that anal-

yses that model changes in total gene family size among

distantly related taxa, rather than comparing closely

related taxa to infer individual gain/loss events and model

rate changes across taxa, may miss effects of herbivory on

gene family evolution when gene birth and death rates are

both accelerated.
Current Opinion in Insect Science 2019, 36:149–156
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Phylogenetic frameworks that consider multiple transi-

tions to herbivory within a relatively recent radiation may

offer more power to uncover patterns due to dietary shifts,

as demonstrated with mammals. Yet even with dense

sampling, biases in estimates of gene gains and losses

could arise from rate heterogeneity, misassembled para-

logs and gene conversion [43], requiring close attention to

appropriate model selection and quality controls when

estimating gene birth and death processes [9�].

What groups are best suited to these constraints? Herbivory

has evolved more often than any other diet shift in Diptera

(atleast 25 times among extant lineages, and probably much

more, [44]). Given the genomic resources already existing for

dipterans, these are an obvious group in which to conduct

detailed, phylogenetically-robust studies of the evolutionary

consequences of transitions to herbivory [3��; Figure 1]. For

example, a species of Scaptomyza in a different subgenus

than the Scaptomyza leaf-miners mentioned above is espe-

cially intriguing because it is a facultative leaf-miner of New

Zealand celery (Apiaceae: Apium prostraum). Although

adults cannot oviposit directly into leaf tissue, second and

third instar larvae move from decaying leaves, where they

eclose from eggs, to living leaves where they become leaf-

miners and complete development [45]. There could be

standing genetic variation for this trait segregating across its

range, providing opportunity for population and quantitative

genomics [46] as well as experimental approaches to identi-

fying the genomic architecture of herbivory [47]. Further,

transcriptomics of flies reared on decaying versus living

leaves may reveal what alleles are involved before the full

ecological transition to herbivory. The plant species on

which they feed contain furanocoumarins, which have

played an important role in our understanding of the evolu-

tionary genomic basis of phytochemical detoxification in

herbivores [35], further enhancing its comparative potential.

Diptera are not the only promising group. Basally-derived

cecidomyiids are mycophagous, but herbivory, gall-forming,

and predation have evolved more recently [48,54]. Detailed

genomic comparisons within the mostly herbivorous Poly-

phaga clade of beetles can also provide insights into derived

losses of herbivory. The resulting change in evolutionary

constraint should help reveal genes necessary for herbivory

in these taxa, and can complement studies of shifts to herbiv-

ory [6��].Similaropportunitiesareavailable in theOrthoptera,

Hemiptera and Hymenoptera (Figure 1). As comparative

genomics of arthropods blossoms, a clearer picture of the

evolutionary genomic roots of herbivory will emerge.
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