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Identifying the factors governing the maintenance of genetic

variation is a central challenge in evolutionary biology. New

genomic data, methods and conceptual advances provide

increasing evidence that balancing selection, mediated by

antagonistic species interactions, maintains genome-wide

functionally important genetic variation within species and

natural populations. Because diverse interactions between

plants and herbivorous insects dominate terrestrial

communities, they provide excellent systems to address this

hypothesis. Population genomic studies of Arabidopsis thaliana

and its relatives suggest spatial variation in herbivory maintains

adaptive genetic variation controlling defense phenotypes,

both within and among populations. Conversely, inter-species

variation in plant defenses promotes adaptive genetic variation

in herbivores. Emerging genomic model herbivores of

Arabidopsis could illuminate how genetic variation in

herbivores and plants interact simultaneously.
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Introduction
Understanding the maintenance of genetic variation

within species and populations is a fundamental goal in

evolutionary biology. Balancing selection, a suite of adap-

tive evolutionary processes that maintain greater genetic

or phenotypic diversity in a population or species than

expected under a neutral evolutionary model, was once

regarded as the primary force maintaining functional

genetic variation. However, until recently, a paucity of

genomic signatures of balancing selection suggested that

polymorphisms maintained by balancing selection may

be rare [1]. Advances in population genomics (e.g. [2]) and

in linking genotype to fitness in nature (e.g. [3]) have
www.sciencedirect.com 
provided new support for widespread balancing selection

acting on genes underlying ecologically important traits.

Despite the ecological ubiquity of plant–herbivore inter-

actions, the extent to which they maintain genetic vari-

ation in plants and insects is not well understood. Here,

we highlight empirical examples and theoretical predic-

tions related to how plant–herbivore interactions could

maintain genetic variation through balancing selection.

Non-exclusive forms of balancing selection include fit-

ness advantages for heterozygotes, frequency dependent

selection favoring rare alleles, and antagonistic selection

across temporally and spatially variable environments

(reviewed in [1,4]). We focus on the role of spatially

varying selection (SVS) because of its rich theoretical

framework and testability with modern genomic

resources. We suggest major questions that future studies

might address, and highlight experimental techniques

and genetically enabled model systems well suited to

answer these questions.

Why should plant–herbivore interactions
maintain genetic diversity?
Host–pathogen interactions are among the most import-

ant selective forces known to maintain genetic variation

in both hosts [5–7] and pathogens [8�], and SVS plays a

key role in this process. For example, geographic variation

in pathogen communities may be the strongest selective

force maintaining non-neutral genetic variation across

human populations [6]. Spatial variation in plant and

herbivore populations and communities is likely to pro-

duce a similar effect. SVS may be particularly important

for herbivores, as plants comprise a large fraction of an

herbivore’s environment and may be more important than

abiotic factors in determining herbivore fitness [9].

Under SVS, selective advantages or disadvantages of

alleles at a locus differ between environments that indi-

viduals of a species occupy (Figure 1b,f; Supplementary

Table 1). A simple model of populations inhabiting

multiple environments, connected by varying levels of

gene flow, forms the foundation of theoretical models of

polymorphism maintenance within populations [1,10]

and among locally adapted populations and host races

[11,12]. Figure 1 illustrates an application of this model to

plant–herbivore interactions: spatial variation in a plant

defensive trait (e.g. [13�]) — which may arise through

complex biotic interactions, abiotic interactions, or
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Figure 1
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Two simplified models for spatially varying selection (SVS) due to spatial heterogeneity in host plant characteristics. Two alleles (‘A1’ and ‘A2’) in an

herbivorous insect have opposing effects on insect fitness on two host plant types (‘P1’ and ‘P2’), which may represent plant genotypes or species that

differ in a defensive trait. When a single insect population feeds on both sympatric host types (a), the two alleles can be maintained at intermediate

frequency within the population (c, d). When host plant types are spatially separated so that insect gene flow between host types is low (e), allele

frequencies will diverge between populations feeding on each host type, and the two allele polymorphism will be maintained at the species level (g, h)

by migration-selection balance [12]. Both novel mutations and standing genetic variation can be driven by SVS to the intermediate frequencies

depicted in the figure. The two models presented above are simplified extremes of situations in nature, which can fall along a continuum of high (right

column) versus low (left column) host plant segregation with insect gene flow among host types.
genetic drift — is expected to maintain genetic variation

within or among insect populations.

Levene [10] first demonstrated mathematically that SVS

can maintain multiple alleles at stable equilibrium fre-

quencies in a single, randomly mating population. Sub-

sequent studies revealed that when gene flow across

environments is low, maintenance of polymorphism

becomes more favorable [1,10,14]. Further, when the

costs of host resistance and enemy virulence vary be-

tween environments [15], global polymorphisms in inter-

acting host and enemy genes are even more likely; for

plants, geographically variable components of the

environment can alter the cost of defense [16]. A final

important insight is that the maintenance of polymorph-

ism is more favorable as environment-specific fitness
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advantages or disadvantages of an allele increase

[10,17]. Thus, alleles maintained by SVS are likely to

have large phenotypic effects and contribute a dispropor-

tionately large amount to fitness [17,18]. These predic-

tions are consistent with the finding that traits under

biotic selection are controlled by loci with larger effects

than traits under abiotic selection in plants [19].

Do herbivores maintain genetic variation in
plants?
Population genomic analyses, enabled by whole-genome

resequencing of natural Arabidopsis thaliana (Arabidopsis)
accessions ([20], http://www.1001genomes.org/), suggest

abundant adaptive variation exists for defense-related

traits. Loci underlying defense-related traits [21] are

highly differentiated between populations compared to
www.sciencedirect.com
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the genome overall [22�]. The same loci showed little

evidence for selective sweeps, inconsistent with an arms

race model in which repetitive sweeps reduce diversity

[22�]. Instead, plant enemies maintain species-wide

defense polymorphisms over broad geographic scales.

These polymorphisms manifest through both protein

structure and gene expression: genes controlling defense

traits, such as glucosinolate production, show high levels

of genetic polymorphism and high variation in expression

between individuals [23]. However, the extent to which

anti-herbivore or anti-pathogen defense genes each con-

tribute to these patterns in Arabidopsis is unclear.

Climate-responsive genes in Arabidopsis show elevated

polymorphism [24] and predict fitness in common gar-

dens [3,25], suggesting climatic variation maintains eco-

logically important genetic variation in Arabidopsis.
However, heterogeneity in biotic interactions (e.g. her-

bivory) may also contribute to these patterns if biotic and

climatic variables co-vary. In fact, allele frequencies at

genes involved in defense varied with climate more often

than expected by chance [25]. Observational data of

herbivore distributions, integrated with common garden

experiments to identify genetic variation underlying fit-

ness trade-offs in the presence/absence of herbivores in

different geographic contexts, may help link genetic

variation to spatially varying herbivory.

Additional studies connecting genotype to phenotype at

individual loci have also illuminated functionally import-

ant variation maintained by herbivores. In Arabidopsis,
geographic variation at a locus controlling variation in

glucosinolate profiles correlated with the relative long-

term abundance of two specialist aphids across Europe,

consistent with the direction of differential selection

imposed by these species in the laboratory [13�]. Sim-

ilarly, variation in glucosinolate biosynthetic genes in

Boechera stricta, a close relative of Arabidopsis, explained

geographic variation in herbivore damage and fitness in

common gardens [26�]. Herbivory may also contribute to

the maintenance of defense variation at finer spatial

scales: amino acid polymorphisms underlying a trade-

off between growth or defense against biotrophic patho-

gens and aphids are maintained at intermediate frequen-

cies across populations in ACD6, a gene controlling leaf

necrosis [27].

Do plants maintain genetic variation in
herbivores?
The strongest evidence that plant diversity drives genetic

variation in herbivorous insects exists for host races —

sympatric insect populations that use different hosts and

are genetically differentiated, despite gene flow among

populations [11]. Antagonistic selection when feeding on

different hosts, a form of SVS, is hypothesized to generate

and maintain genetic divergence at loci affecting prefer-

ence and performance on different host plants, reducing
www.sciencedirect.com 
inter-race gene flow and creating more subtle divergence

in nearby genomic regions [11]. Genome-wide scans

revealed that regions with loci affecting preference for,

and population growth rate on, different hosts have

diverged in pea aphid (Acyrthosiphon pisum) host races

[28�,29]. Meanwhile, divergent genomic regions in apple

maggot races (Rhagoletis pomonella) control diapause tim-

ing [30]. These findings highlight that adaptations to

host-specific defenses can maintain genetic differences

between host races, but other differences between host

plants (e.g. phenology) can also be important.

At present, there is little evidence from the literature for

host plant variation maintaining polymorphism within

herbivores in the absence of host race formation (but

see [31,32]). However, differential performance of differ-

ent spider mite (Tetranychus urticae) genotypes across

hosts suggests spatial mosaics of host plants can maintain

significant phenotypic variation in generalist herbivores

[33]. Similar patterns may occur even in relatively special-

ized insects as well: though geography explains patterns

of relatedness among populations of the large pine weevil

(Hylobius abietis), allele frequencies at a few loci of

unknown function differ between individuals feeding

on spruce or pine [34].

Detecting plant-driven balancing selection in
herbivorous insects
Illuminating signatures of balancing selection in herbi-

vorous insects driven by plant variation requires three

phases: (1) identifying plant genes or traits affecting

insect fitness, (2) identifying insect genes interacting with

plant genes or traits that mediate effects on insect fitness,

and (3) using population genetic tests for balancing selec-

tion with appropriate null hypotheses. The ability to

rapidly generate genomic sequence data from many indi-

viduals within natural populations, and to conduct exper-

imental evolution and common garden experiments using

completely sequenced plant accessions, now makes

achieving these criteria feasible at the scale of genomic

analyses. Cost-effective methods relying on pooled

sequencing are particularly promising (Box 1).

False positive and negative results stemming from con-

founding factors, such as population structure, are a major

obstacle to mapping loci through genome-wide associ-

ation studies [35]. Meanwhile, many population genetic

tests for balancing selection (Supplementary Table 2)

suffer high rates of false positives resulting from genetic

drift. Further, simulations [36] reveal that when SVS

favors multiple alleles within a population, partial se-

lective sweeps during which a new mutation rises to

intermediate frequency proceed extremely slowly. As a

result, recombination during the sweep limits hitchhiking

of neutral polymorphism to narrow windows near the

selected site, and signatures of balancing selection are

difficult to detect. Reduced-representation sequencing
Current Opinion in Plant Biology 2013, 16:443–450
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Box 1 The utility of pooled sequencing experiments for mapping

targets of balancing selection in herbivorous insects

Genome sequences can be generated easily for non-model insects.

However, generating, sequencing, and maintaining inbred lines

required for traditional quantitative trait locus (QTL) mapping or

genome wide association (GWA) studies remains laborious and

expensive. Conversely, short read, next-generation sequencing of

pooled individuals, in which allele frequencies can be compared

between biologically meaningful groups of individuals, offers a

desirable alternative in the following contexts:

Extreme-QTL mapping requires the generation of large populations

that exhibit segregating variation for a trait, isolation of many progeny

with extreme trait values, and estimation of allele frequencies in

phenotypically extreme individuals through pooled sequencing [52].

Accuracy of the approach is similar to GWA in Drosophila

melanogaster [53], though pooled extreme-QTL approaches pre-

clude estimation of trait heritability, epistasis, and locus effect sizes.

High-throughput phenotyping of herbivore weight gain or develop-

ment time on different plant mutant genotypes, ecotypes, or species

offers an avenue to identify herbivore genetic variation maintained by

variation in plant defenses. Experimental populations for phenotyp-

ing could be generated by crossing phenotypically divergent parents

from a single population or across locally adapted populations, or

derived from directly sampling wild individuals to take advantage of

natural, low levels of linkage disequilibrium.

Evolve-and-resequence approaches [54] involve altering phenotypes

of experimental populations through artificial selection or divergent

growth conditions, followed by pooled resequencing of experimental

populations to uncover causal genetic variants. Replicate selection

for high and low performance insect populations on different plant

types could directly uncover loci with antagonistic effects that

depend on host plant characteristics.

Allelic distributions in nature have been used to infer local adaptation

[55]. Alleles underlying preferential feeding or high survival on

particular, sympatric plants should be at higher frequencies in

insects consuming those plants, and the distributions of locally

adaptive alleles across populations should be explained more by

habitat characteristics (e.g. common host plant species, genotypes,

or chemotypes) than population structure.
strategies such as RAD-tag sequencing [37], therefore,

may not generate sequence data within small genomic

regions showing signatures of balancing selection,

particularly in species with low levels of linkage disequi-

librium. Integrating genetic mapping studies with popu-

lation analysis using whole genome sequences (e.g. re-

sequencing) is therefore necessary to reveal highly infor-

mative, genome-scale patterns.

Model systems for testing if plant-herbivore
interactions maintain variation
Studying the maintenance of variation by reciprocal

plant–insect interactions requires model systems that

are experimentally tractable, genomically characterized

and interact in nature. While features affecting the ability

to perform experiments and generate genomic data —

such as genome size or the ease of rearing and manipulating

the organism in the laboratory or field — are important to

consider, ecological and evolutionary inferences require

knowledge of the distributions and ecologies of the inter-

acting species. Ideally, herbivore species amenable to
Current Opinion in Plant Biology 2013, 16:443–450 
addressing these questions would be nested evolutionarily

among a set of species with genomic resources, have low

linkage disequilibrium and a large effective population

size, and feed naturally on model plant species with

sequenced accessions and functional mutants.

Given the available genomic resources and detailed insight

into the phenotypic and genetic basis of important defense

traits, Arabidopsis and its close relatives are excellent

models to study genetic variation under balancing selec-

tion. A number of herbivorous arthropod species that attack

Arabidopsis have genomic resources in various stages of

development; and these species differ in feeding mode

(piercing-sucking or chewing), host breadth (specialist or

generalist), and mode of reproduction (Figure 2). New

genomic resources for chewing herbivores such as the

genome sequence of the diamondback moth (Plutella
xylostella) and the two-spotted spider mite (T. urticae) have

facilitated novel insight into the evolution of herbivory and

resistance to mustard defenses [38,39]. Other species are

also emerging as useful models for addressing if and how

plant–herbivore interactions maintain genetic variation.

For example, the leaf-mining drosophilid fly Scaptomyza
flava specializes on Arabidopsis and relatives (Brassicaceae)

in the wild [40] (Figure 3). S. flava is closely related to the

many Drosophila species with completely sequenced gen-

omes and has a relatively small genome (290 Mb) [41].

Remarkably, this species recently evolved from within the

microbe-feeding Drosophila species [42]. S. flava, like other

chewing herbivores, is sensitive to canonical jasmonate-

dependent defenses, including glucosinolates, and exhi-

bits variation in performance across Arabidopsis accessions

[41,43]. Genes that are functionally important in detoxifi-

cation against glucosinolates have been shown to be under

positive selection [Gloss et al., in review]. Because each

generation is sexual, it promises to be a good candidate for

use in laboratory selection experiments. A sequenced

transcriptome [43] and genome [R. Lapoint et al., unpub-

lished] will allow this species to be leveraged in a popu-

lation genomics context to complement the important

lessons learned from other systems.

In addition to Arabidopsis, population and comparative

genomic resources are rapidly accumulating for plant

species of economic and ecological importance, particu-

larly crop plants and their wild relatives [44–46] and forest

trees [47]. Importantly, these species span a wide range of

taxonomic diversity and vary in defensive traits and life

history strategies. Emerging genomic resources for herbi-

vores in these systems will complement those already

available (e.g. [48,49]), enabling identification of common

patterns underlying the maintenance of variation through

plant–herbivore interactions across diverse model systems.

Outstanding questions/future directions
Together, population genomic analysis of natural popu-

lations coupled with genetic mapping and experimental
www.sciencedirect.com



Balancing selection and plant–herbivore interactions Gloss et al. 447

Figure 2
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Comparison of some herbivorous insects of Arabidopsis thaliana with emerging genomic resources. Draft genome sequences of two M. persicae

clones are available for BLAST searches (AphidBase; URL: http://www.aphidbase.com/, http://tools.genouest.org/tools/myzus/login). See Refs. [57–

60].
evolution (Box 1) can address whether local adaptation or

balanced polymorphisms explain much of the adaptive

nucleotide variation found in genomic datasets [50]. Out-

standing questions include:

1. Is balancing selection, particularly through SVS, an

important force maintaining variation in plant–herbi-

vore systems?

2. How important are different sources of plant vari-

ation — intraspecific, interspecific, and non-

genetic — for the maintenance of genetic variation

in herbivores, and vice versa?
www.sciencedirect.com 
3. How does the amount of variation maintained by

balancing selection differ between systems with

specific versus diffuse species interactions?

4. What are the spatial and temporal scales over which

plant–herbivore interactions can maintain balanced

polymorphism?

5. How often do genes under balancing selection within

populations diverge adaptively among populations or

species, given that selective sweeps favoring new

mutations erode polymorphism?

6. Do genes under balancing selection through plant–
herbivore interactions provide standing variation
Current Opinion in Plant Biology 2013, 16:443–450
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Figure 3

(a)

(b)

(c)
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Arabidopsis thaliana and Scaptomyza flava are globally distributed and share much of their range. (a) Distribution of A. thaliana modified from [56] in

green. Blue triangles mark presence of S. flava within a country, region, or island group. (b) A. thaliana with adult S. flava oviposition damage on leaves.

(c) Leaf-mining larva of S. flava partially removed from A. thaliana leaf. Distribution references are provided in Supplementary Table 3.
co-opted for other adaptations, such as pesticide

resistance?

Answers to these questions may differ between plants and

arthropod herbivores, primarily because many plant

defense traits can be constrained by the multitude of

diverse herbivores attacking each host plant species [51].

Systems in which one, highly specialized herbivore heav-

ily influences plant fitness are ideal for studying both

sides of the interaction (plant and herbivore) simul-

taneously, but may be less generalizable (e.g. [9]).

Conclusions
Established evolutionary theory indicates that adaptive

processes can facilitate the maintenance, rather than

simply the erosion, of genetic variation within and among

populations of plants and herbivores. Rapid progress on

the development of genomic resources for model plant

species with wild relatives has facilitated the illumination

of the genes and alleles underlying natural trait variation,

as well as how genomes are shaped by adaptive and

neutral processes. Arabidopsis has been a key model in

this regard, and the promise of >1000 completely

sequenced genomes, an active research community inves-

tigating all facets of its biology, and emerging model

herbivores will enable studies linking genetic variation

in plants to variation within herbivore species and com-

munities. The extent to which balancing selection sensu
lato can account for the large amount of genetic variation

present in plant and herbivorous insect populations is a
Current Opinion in Plant Biology 2013, 16:443–450 
general one considering that most named species of life

are herbivorous insects and the plants on which they feed.
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